
VIRUS BULLETIN www.virusbtn.com

4 MAY 2009

ANTI-UNPACKER TRICKS
– PART SIX
Peter Ferrie
Microsoft, USA

New anti-unpacking tricks continue to be developed as
the older ones are constantly being defeated. This series
of articles (see also [1–5]) describes some tricks that
might become common in the future, along with some
countermeasures.

This article concentrates on anti-debugging tricks that target
plug-ins for the OllyDbg debugger. All of the techniques
described here were discovered and developed by the author.

OllyDbg plug-ins
OllyDbg is perhaps the most popular user-mode debugger.
A number of packers have been written that are able to
detect OllyDbg, so plug-ins have been created to attempt to
hide it from those packers.

Last month we looked at antiAnti, HideDebugger, HideOD,
IsDebugPresent, Olly Advanced and OllyICE. In this
article we look at some more OllyDbg plug-ins and the
vulnerabilities that could be used to detect them.

Olly Invisible

Olly Invisible hooks the code in OllyDbg that is reached
when it is formatting the kernel32 OutputDebugStringA()
string, and then attempts to replace all ‘%’ characters with
‘ ’ in the message. However, a bug in the routine causes it to
miss the last character in the string.

The plug-in hooks the debuggee’s kernel32
OutputDebugStringA() function by replacing the fi rst six
bytes with an indirect jump to a dynamically allocated block
of memory. This block attempts to replace all ‘%’ characters
with ‘_’ in the message.

Similarly, Olly Invisible hooks the debuggee’s kernel32
OutputDebugStringW() function by replacing the fi rst six
bytes with an indirect jump to a dynamically allocated block
of memory. This block attempts to replace all ‘%’ characters
with ‘_’ in the message.

The plug-in hooks the debuggee’s kernel32
IsDebuggerPresent() function in the same way – by
replacing the fi rst six bytes of the function with an indirect
jump to a dynamically allocated block of memory. In this
case the block always returns zero, regardless of the value in
the PEB->BeingDebugged fl ag.

Olly Invisible hooks the debuggee’s ntdll
NtQueryInformationProcess() function in the same way
again, replacing the fi rst six bytes of the function with an

indirect jump to a dynamically allocated block of memory.
This block calls the original ntdll
NtQueryInformationProcess() function, and then checks
whether an error occurred. If no error occurred, then the
block checks if the ProcessInformationClass is the
ProcessDebugPort class, and that the ProcessInformation
parameter is non-zero, and then checks that four bytes are
writable at the specifi ed memory address. If all of these
requirements are met, Olly Invisible writes a zero to the
memory address at which the ProcessInformation parameter
points. This method is almost unfl awed, but it omits a
check of whether the current process is specifi ed.
However, the current process can be specifi ed in ways
other than the pseudo-handle that is returned by the
kernel32 GetCurrentProcess() function, and that must be
taken into account.

If possible, Olly Invisible patches the debuggee’s ntdll
CsrGetProcessId() function, so that it always returns zero.
However, since this function should never return zero, such
a result is a sure sign that the plug-in is present.

Olly Invisible hooks the debuggee’s ntdll
NtQuerySystemInformation() function by replacing the fi rst
six bytes with an indirect jump to a dynamically allocated
block of memory. This block calls the original ntdll
NtQuerySystemInformation() function, and then checks
if an error occurred. If no error occurred, it checks if the
SystemInformationClass is the SystemProcessInformation
class. If it is, then the block searches within the returned
process list for processes with the image name
‘OllyDbg.exe’. If any are found, then the block adjusts
the list so that it skips those entries. However, the
entries themselves are untouched, and can be found by a
brute-force search of the returned buffer.

Olly Invisible hooks the debuggee’s ntdll
NtReadVirtualMemory() function by replacing the fi rst six
bytes of the function with an indirect jump to a dynamically
allocated block of memory. This block calls the original
ntdll NtReadVirtualMemory() function, and then checks if
an error occurred. If no error occurred, it checks if the read
includes the address of a hooked function. If it does, then
the block restores the original bytes of the function in the
returned buffer, thus achieving in-memory stealth for remote
processes. However, there are three problems in the code.

The fi rst problem is in the bounds check: Olly Invisible only
checks if the read includes the address of the fi rst byte of a
hooked function. This means that if the read begins one byte
after the start of the hooked function, then the hook will be
visible. The second problem is that Olly Invisible does not
check how many bytes have been read, but always attempts
to restore the six altered bytes. Thus, even if only one byte
was read, six bytes will be written to the buffer. If the buffer

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

5MAY 2009

is at the end of a page or in a sensitive location, then an
exception or memory corruption could occur as a result. The
third problem is that Olly Invisible does not check the process
handle for which the request was made, which can lead to the
‘stealthing’ of the memory of a completely different process.
The correct behaviour would be to restore the bytes only if
the current process is specifi ed. However, the current process
can be specifi ed in ways other than the pseudo-handle that is
returned by the kernel32 GetCurrentProcess() function, and
that must be taken into account.

Olly Invisible sets the debuggee’s PEB->BeingDebugged
fl ag to zero.

The author of Olly Invisible has not responded to the report.

PhantOm

The PhantOm plug-in changes the ‘OllyDbg - <fi lename>
- [CPU]’ string in OllyDbg to ‘PhantOm - [CPU]’.

It changes the ‘CPU -’ string either to the one specifi ed in
the phantom.ini fi le, or to ‘o_O’ if no string is specifi ed. It
changes the ‘%smodule’ string to ‘%sm0dule’, and changes
the ‘NULL thread’ string to ‘NULL thr3ad’.

PhantOm changes the export address for the debuggee’s
ntdll NtQueryInformationProcess() function so that it points
into the fi le header of ntdll.dll. It also changes the
corresponding import address in the debuggee’s
kernel32.dll to point into the fi le header of ntdll.dll. It
copies the original ntdll NtQueryInformationProcess()
function code into the fi le header of ntdll.dll, and then
appends some code to the copied function. The appended
code checks the ProcessInformationClass parameter. If the
ProcessTimes class is specifi ed, then the hook returns an
error. The purpose of the change to kernel32.dll is to hook
the kernel32 GetProcessTimes() function implicitly. The
ProcessTimes class can be used to expose the length of time
that a user requires to debug an application, so by hiding
this information, it hides OllyDbg too.

PhantOm aims to patch the debuggee’s user32 BlockInput()
function code to always return successfully, but this code
does not work in Windows 2000 and earlier because of an
apparently reversed conditional statement.

PhantOm erases the dwX, dwY, dwXSize, dwYSize,
dwXCountChars, dwYCountChars and dwFillAttribute
fi elds from the RTL_USER_PROCESS_PARAMETERS
block. These characteristics are checked by the ChupaChu
debugger test, which also checks whether bit 7 is set in
the dwFlags fi eld. However, due to a bug, the latter check
always fails. If it were not for the bug, the ChupaChu test
would detect the plug-in.

PhantOm attempts to hook the debuggee’s ntdll
KiUserExceptionDispatcher() function by replacing an

0xE8 opcode (‘CALL’ instruction) with an 0xE9 opcode
(‘JMP’ instruction) at a fi xed location within the routine.
This behaviour is a bug, because in Windows Vista the
routine has an additional instruction prepended to it,
meaning that the required instruction is in a different
location. However, if the hook is successful, then when
an exception occurs, the hook saves the state of the debug
registers into a private memory region. The hook then swaps
in the previous debug register values before passing the
exception to the debuggee. This tricks the debuggee into
thinking that any changes it makes are current. PhantOm
also attempts to hook the ntdll NtContinue() function in
order to save the updated debug register values on return
from the debuggee. However, a bug exists in the hooking
code. The hook checks for the correct instruction before
replacing it, but due to an incorrect conditional assignment,
it performs the replacement regardless of the result.

PhantOm hooks the debuggee’s kernel32 GetTickCount()
function by replacing the fi rst fi ve bytes of the function
with a relative jump to a dynamically allocated block of
memory. This block intercepts attempts to call the kernel32
GetTickCount() function, and then returns a tick count that
is incremented by one each time it is called, regardless of
how much time has passed.

PhantOm patches __fuistq() in OllyDbg to avoid the
fl oating-point operations error. It does this by skipping
the data conversion. This is not the proper way to avoid
the problem, however, since no values are converted as a
result. A better fi x would be to change the fl oating-point
exception mask to ignore such errors. This can be achieved
by changing the dword at fi le offset 0xCB338 from 0x1332
to 0x1333, or just by loading that value manually into the
control word of the FPU.

PhantOm patches the code in OllyDbg that is reached
when it is formatting the kernel32 OutputDebugStringA()
string. The patch prevents the debugger from formatting the
message.

PhantOm hooks the code in OllyDbg that is reached when a
debug event occurs. When the hook is reached, it checks for
the following events:

• If the DBG_PRINTEXCEPTION_C (0x40010006)
exception is seen, then the hook returns a status that the
exception was not handled. This hides OllyDbg from
the kernel32 GetLastError() detection method.

• If the EXCEPTION_ACCESS_VIOLATION
(0xC0000005) or EXCEPTION_GUARD_PAGE
(0x80000001) exception is seen and is not within the
bounds of a memory breakpoint, then the hook returns
a status that the event was not handled. This hides
OllyDbg from the guard page detection method.

VIRUS BULLETIN www.virusbtn.com

6 MAY 2009

• If the EXCEPTION_ ILLEGAL_INSTRUCTION
(0xC000001D), EXCEPTION_INVALID_LOCK_
SEQUENCE (0xC000001E) or EXCEPTION_
INTEGER_DIVIDE_BY_ZERO (0xC00000094)
exception is seen, then PhantOm returns a status that
the event was not handled. This prevents OllyDbg from
breaking on several common conditions.

PhantOm installs a driver which hooks the
NtQueryInformationProcess(), NtOpenProcess(),
NtClose(), NtSetInformationThread(), NtYieldExecution(),
NtQueryObject(), NtQuerySystemInformation() and
NtSetContextThread() functions in ntoskrnl.exe by name,
and the GetWindowThreadProcessId(), EnumWindows(),
FindWindowA() and GetForegroundWindow() functions
in ntoskrnl.exe by service table index. What happens next
depends on the hook that is called:

• When the NtQueryInformationProcess() function is
called, the hook checks the ProcessInformationClass
parameter. If the ProcessDebugPort class was specifi ed,
then the hook zeroes the debug port, but without
checking the process handle. The correct behaviour
would be to zero the port only if the current process is
specifi ed. However, the current process can be specifi ed
in ways other than the pseudo-handle that is returned
by the kernel32 GetCurrentProcess() function, and that
must be taken into account.

If the ProcessBasicInformation class was specifi ed,
then the hook replaces the process ID of OllyDbg
with the process ID of EXPLORER.EXE in the
InheritedFromUniqueProcessId fi eld. This could be
considered a bug, since the true parent might not be
Explorer. The proper behaviour would be to use the process
ID of OllyDbg’s parent.

• When the NtOpenProcess() function is called, the hook
checks if the process ID to open matches the process ID
of OllyDbg or CSRSS.EXE, and returns an error in the
latter case.

• When the NtClose() function is called, the hook checks
for a valid handle before attempting the close. This hides
OllyDbg from the CloseHandle(invalid) detection method.

• When the NtSetInformationThread() function is called,
the hook checks if the HideThreadFromDebugger class
has been specifi ed, and returns success if that is the
case. There is a bug in this code, which is that if an
invalid handle is passed to the function, then an error
code should be returned. A successful return would be
an indication that PhantOm is running.

• When the NtYieldExecution() function is called, the
hook always returns a status. This hides OllyDbg from
the NtYieldExecution() detection method.

• When the NtQueryObject() function is called, the hook
checks for the ObjectAllTypesInformation class, and
then erases all the returned information if it is specifi ed.

• When the NtQuerySystemInformation() function is
called, the hook checks the SystemInformationClass
parameter. If the SystemKernelDebuggerInformation
class is specifi ed, then the hook erases all of the
returned information. If the SystemProcessInformation
class is specifi ed, then the hook adjusts the list to skip
those entries. However, the entries are untouched and
can be found by a brute-force search of the returned
buffer.

• When the NtSetContextThread() function is called, the
hook clears the CONTEXT_DEBUG_REGISTERS
fl ag from the ContextFlags fi eld before completing the
call. This prevents the debug register values from being
returned, and hides OllyDbg from the debug registers
detection method.

• When the GetWindowThreadProcessId() function is
called, the hook checks whether the process ID matches
the process ID of OllyDbg, and returns zero if that
is the case. This technique hides OllyDbg from the
window handle detection method.

• When the EnumWindows() function is called, the hook
removes from the list all windows whose process ID
matches that of OllyDbg. This technique hides OllyDbg
from the window handle detection method.

• When the FindWindow() function is called, the hook
checks whether the returned window handle belongs to
OllyDbg, and returns zero if that is the case.

• When the GetForegroundWindow() function is
called, the hook checks whether the returned window
handle belongs to OllyDbg, and returns the previous
foreground window handle in that case.

PhantOm installs a driver that makes the RDTSC
instruction illegal when called from ring 3. The driver
intercepts the exception that occurs when the instruction is
issued. When the exception occurs, the driver executes the
RDTSC instruction in ring 0, and then uses the low byte of
the returned value as the time elapsed since the last time
the RDTSC instruction was executed. This has the effect
of slowing perceived time, and hides OllyDbg from the
RDTSC detection method.

PhantOm sets the debuggee’s PEB->BeingDebugged fl ag
to zero.

One of the authors of PhantOm responded to the report:
the BlockInput() bug will be fi xed in a future version; the
KiUserExceptionDispatcher() and NtContinue() bugs will
remain, because Windows Vista is not supported.

VIRUS BULLETIN www.virusbtn.com

7MAY 2009

Stealth64

The Stealth64 plug-in forces OllyDbg to ignore the
OptionalHeader bug described in [6].

Stealth64 patches the code in OllyDbg that is reached when
it reads the debuggee’s imported function names. The patch
stops OllyDbg from displaying an error message if an
imported function name cannot be read.

The plug-in patches the code in OllyDbg that is reached
when it parses the debuggee’s Import Table. The patch stops
OllyDbg from displaying an error message if the import
table appears to be corrupted.

Stealth64 patches the code in OllyDbg that is reached when
it parses the debuggee’s Base Relocation Table. The patch
stops OllyDbg from applying relocations. However, this
also prevents OllyDbg from debugging certain fi les.

Stealth64 handles the exception-priority trick described in
[1] by forcing a single-step exception to occur in the ntdll
KiUserExceptionDispatcher() function.

The plug-in sets the debuggee’s PEB->BeingDebugged and
PEB->NtGlobalFlag fl ags to zero.

Stealth64 hooks the debugger’s kernel32 CreateProcessA()
function. The hook defi nes and sets the ‘_NO_DEBUG_
HEAP’ environment variable to one, before calling directly
into the kernel32 CreateProcessInternalA() function. This
environment variable forces a process to use a standard heap
instead of a debugging heap, even if the process is being
debugged.

Stealth64 removes the SeDebugPrivilege from the process
token.

Stealth64 hooks the debuggee’s ntdll
KiUserExceptionDispatcher() function. When an exception
occurs, the hook saves the state of the debug registers into a
private memory region if the ‘ProtectDRX’ option is enabled.
The hook swaps in the previous debug register values if the
‘HideDRX’ option is enabled, before passing the exception to
the debuggee. This tricks the debuggee into thinking that any
changes it makes are current. Stealth64 also hooks the ntdll
NtContinue() function, in order either to save the updated
debug register values on return from the debuggee if the
‘HideDRX’ option is enabled, or to swap back the original
debug register values if the ‘ProtectDRX’ option is enabled.

Stealth64 searches within up to 256 bytes of the debugger’s
ntdll DbgUiConvertStateChangeStructure() function
for a reference to the DBG_PRINTEXCEPTION_C
(0x40010006) exception, followed by an 0x75 opcode
(‘JNE’ instruction). If the sequence is found, then it replaces
the 0x75 opcode with an 0xEB opcode (‘JMP’ instruction).
The ntdll DbgUiConvertStateChangeStructure() function
was introduced in Windows XP, but Stealth64 runs only

in Windows Vista64, so there is no problem with earlier
versions of Windows. The effect of the patch is to prevent
the OUTPUT_DEBUG_STRING_EVENT debug event
from being delivered to the debugger. Instead, a generic
EXCEPTION_DEBUG_EVENT debug event is delivered to
the debugger. This hides OllyDbg from the GetLastError()
detection method. However, there is a bug in the search
routine, which assumes that all fi ve bytes can be read. If the
read accesses out-of-bounds memory, then OllyDbg will
crash.

Stealth64 intercepts the EXCEPTION_GUARD_PAGE
(0x80000001) exception and checks the address at which
the fault occurred. If the fault is not within the bounds of a
memory breakpoint, then the hook returns a status that the
event was not handled. This hides OllyDbg from the guard
page detection method.

Stealth64 changes the address in each of the debuggee
thread’s TEB->Wow32Reserved fi eld values, to point
to a dynamically allocated block of memory. That fi eld
is undocumented, but it normally points into a function
within the wow64cpu.dll which orders the parameters for
a 64-bit system call, and then falls into the wow64cpu
TurboDispatchJumpAddressStart() function to perform
the transition to kernel mode. By changing this fi eld value,
Stealth64 creates a clean single point of interception for all
system calls.

The block that Stealth64 allocates contains code to watch
for particular system table indexes. This act ties Stealth64
to a specifi c version of Windows Vista64. The indexes
that are intercepted are: NtQueryInformationProcess,
NtQuerySystemInformation, NtSetInformationThread,
NtClose, NtOpenProcess, NtQueryObject, FindWindow,
BlockInput, NtQueryPerformanceCounter, BuildHwndList,
NtProtectVirtualMemory and NtQueryVirtualMemory.
If none of these indexes is seen, and if the
‘HandleSingleStepExceptions’ option is enabled, then
Stealth64 will register a Vectored Exception Handler.
That handler consumes EXCEPTION_SINGLE_STEP
(0x80000004) exceptions that occur in the region of
memory that includes the injected code.

If the NtQueryInformationProcess index is seen, then the
hook calls the original TEB->Wow32Reserved pointer and
checks if the function has succeeded. If it has, then the
hook checks the ProcessInformationClass parameter. If the
ProcessDebugPort class is specifi ed, then the hook zeroes the
port and returns success. If the ProcessDebugObjectHandle
class is specifi ed, then the hook zeroes the handle and
returns STATUS_PORT_NOT_SET (0xC0000353). If the
ProcessDebugFlags class is specifi ed, then the hook sets
the fl ags to true, signifying that no debugger is present, and
returns success. The correct behaviour for these three classes

VIRUS BULLETIN www.virusbtn.com

8 MAY 2009

is for the changes to be applied only if the current process
is specifi ed. However, the current process can be specifi ed
in ways other than the pseudo-handle that is returned by the
kernel32 GetCurrentProcess() function, and that must be
taken into account.

If the ProcessBasicInformation class is specifi ed, then the
hook replaces the process ID of OllyDbg with the process ID
of EXPLORER.EXE in the InheritedFromUniqueProcessId
fi eld. This could be considered a bug, since the true parent
might not be Explorer. The proper behaviour would be to
use the process ID of OllyDbg’s parent.

If the NtQuerySystemInformation index is seen, the
ReturnLength is zero and the SystemInformationClass
is the SystemProcessInformation class, then the hook
uses the TIB->ArbitraryDataSlot fi eld to hold the
returned length. There is a bug here, which is that the
previous value in that fi eld is not saved, and the hook
always zeroes it before returning. The problem with this
approach is that it can be detected by malware that sets the
TIB->ArbitraryDataSlot fi eld value to non-zero, then calls
the ntdll NtQuerySystemInformation() function with no
ReturnLength parameter. Stealth64 is revealed because the
TIB->ArbitraryDataSlot fi eld value is zero.

In any case, the hook calls the original
TEB->Wow32Reserved pointer, and then checks if the
function has succeeded. If it has, then the hook checks that
the ‘Fake Parent’ option is enabled. If it is, then the hook
replaces the process ID of OllyDbg with the process ID of
EXPLORER.EXE in the InheritedFromUniqueProcessId
fi eld. This could be considered another bug, since the true
parent might not be Explorer (as before, the proper behaviour
would be to use the process ID of OllyDbg’s parent).

The hook also checks if the ‘NtQuerySystemInformation’
option is enabled. If it is, then the hook parses the returned
process list. The hook deletes the entry that corresponds to
OllyDbg by copying the entries that follow over the top and
then reducing the returned length.

If the NtSetInformationThread index is seen, and the
ThreadInformationClass is the HideThreadFromDebugger
class, then the hook returns success. There is a bug in this
code, which is that if an invalid handle is passed to the
function, then an error code should be returned. A successful
return would be an indication that Stealth64 is running.

If the NtClose index is seen, then the hook calls the ntdll
NtQueryObject() function to verify that the handle is valid.
If it is, then the hook calls the ntdll NtClose() function.
Otherwise, it returns STATUS_INVALID_HANDLE
(0xC0000008).

If the NtOpenProcess index is seen, then the hook attempts
to replace the process ID of OllyDbg with the process ID

of EXPLORER.EXE in the address to which the ClientId
parameter points. However, there are three bugs here: the
fi rst is that the hook does not check if the ClientId parameter
points to a valid memory location. An invalid memory
address causes an exception that can be intercepted by the
debuggee. Such an exception is a sure sign that Stealth64 is
running. The second bug is that the hook does not check if
the ClientId parameter points to a writable memory location
prior to attempting to replace the process ID. Writing to
a read-only memory address causes an exception that can
be intercepted by the debuggee. Such an exception is an
indication that Stealth64 is running. The third bug is that the
hook zeroes the upper 32 bits of the quadword to which the
ClientId parameter points. This can allow the function to
succeed in places where it should fail. A successful return in
that case is another sign that Stealth64 is running.

If the NtQueryObject index is seen, then the hook calls the
original TEB->Wow32Reserved pointer, then checks if the
function has succeeded. If it has, then the hook checks if the
ObjectInformationClass is the ObjectAllTypesInformation
class. If it is, then the hook searches the returned buffer for
all objects whose length is 0x16 bytes, and then zeroes the
object counts, without checking the object name. This is a
bug, since there could be other objects with the same name
length, and their handle counts will also be zeroed.

If the FindWindow index is seen, then the hook calls the
original TEB->Wow32Reserved pointer, and then checks
if the function has succeeded. If it has, then the hook calls
the user32 GetWindowThreadProcessId() function for
the returned window handle. The hook returns zero if the
returned process ID matches the process ID of OllyDbg.

If the BlockInput index is seen, then the hook simply returns.
This behaviour is a bug, since the return code is never set.

If the NtQueryPerformanceCounter index is seen, then the
hook calls the original TEB->Wow32Reserved pointer, and
then checks if the function has succeeded. If it has, then the
hook returns a tick count that is incremented by one each
time it is called, regardless of how much time has passed.

If the BuildHwndList index is seen, then the hook calls the
original TEB->Wow32Reserved pointer, and then checks
if the function has succeeded. If it has, then the hook
parses the returned hwnd list and then deletes the entry that
corresponds to OllyDbg by copying the entries that follow
over the top, and then reducing the returned length.

If the NtProtectVirtualMemory index is seen, then the hook
checks if the ProcessHandle parameter corresponds to the
GetCurrentProcess() pseudo-handle. If it does, then the
hook checks if the value in the memory location to which
the BaseAddress parameter points matches the location
of the internal breakpoint address that Stealth64 uses. If it

VIRUS BULLETIN www.virusbtn.com

9MAY 2009

does, then the hook returns success. There are three bugs
in this code, and one behaviour that could be considered
a bug. The fi rst bug is that the hook does not check if the
BaseAddress parameter points to a valid memory location.
An invalid memory address causes an exception that can
be intercepted by the debuggee. Such an exception is a
good indication that Stealth64 is running. The second bug
is that the BaseAddress parameter can span the region that
is protected by the internal breakpoint, and as a result the
comparison will fail. The third bug is that to return success
if the comparison succeeds might be incorrect behaviour
if the NewAccessProtection parameter specifi es an invalid
protection value. In that case, an error code should be
returned instead. The behaviour that could be considered
a bug is that the ProcessHandle parameter might contain a
handle to the current process, as returned by the kernel32
OpenProcess() function. This handle will not be recognized
as belonging to the current process.

If the NtQueryVirtualMemory index is seen, then the hook
checks if the BaseAddress parameter matches the location
of the internal breakpoint address that Stealth64 uses,
and that the VirtualMemoryInformationClass parameter
is zero. If those checks succeed, then the hook calls the
original TEB->Wow32Reserved pointer, and attempts to
set the value in the VirtualMemoryInformation->Protect
fi eld to Executable/Readable/Writable, if the
VirtualMemoryInformation parameter has been specifi ed.

There are four bugs in this code. The fi rst is that the
hook does not check if the function call succeeded.
The second bug is that the hook does not check if the
VirtualMemoryInformation parameter points to a valid
memory location. An invalid memory address causes an
exception that the debuggee can intercept. Such an exception
is a sure sign that Stealth64 is running. The third bug is that
the hook does not check if the VirtualMemoryInformation
parameter points to a writable memory location prior to
attempting to write the VirtualMemoryInformation->Protect
fi eld value. Writing to a read-only memory address causes an
exception that the debuggee can intercept. Such an exception
is a sure sign that Stealth64 is running. The fourth bug is
that the hook does not check the process handle for which
the request was made, which can lead to lying about the
memory state of a completely different process. The correct
behaviour would have been to check if the current process
is specifi ed. However, the current process can be specifi ed
in ways other than the pseudo-handle that is returned by the
kernel32 GetCurrentProcess() function, and that must be
taken into account.

A HandleInt2D option exists but it is not supported.

The author of Stealth64 responded to the report, and the
bugs will be fi xed in a future version.

Olly’s Shadow

Olly’s Shadow is a patched and renamed version of
OllyDbg. Since it is renamed, it hides OllyDbg from the
standard FindWindow() and process enumeration detection
techniques. Olly’s Shadow does not export any functions,
which avoids another common detection method on the
export name table. However, this prevents the use of
plug-ins, unless they use hard-coded addresses.

Olly’s Shadow behaves like Olly Invisible with respect
to the OutputDebugString handling, complete with the
same bug: Olly’s Shadow hooks the code in OllyDbg
that is reached when OllyDbg is formatting the kernel32
OutputDebugStringA() string, and then attempts to replace
all ‘%’ characters with ‘ ’ in the message. However, a bug in
the routine causes it to miss the last character in the string.

Olly’s Shadow changes the options that are used when
loading symbols, and then disables the name merging.
This avoids several problems with corrupted symbol fi les,
including the dbghelp.dll bug described in [1].

Olly’s Shadow changes the class name from ‘OLLYDBG’
to ‘SHADOW’, and the window title from ‘OllyDbg’ to
‘Shadow’.

The author of Olly’s Shadow could not be contacted.

In the fi nal part of this series next month we will look at
anti-debugging tricks that target other popular debuggers, as
well as some anti-emulating and anti-intercepting tricks.

The text of this paper was produced without reference to
any Microsoft source code or personnel.

REFERENCES
[1] Ferrie, P. Anti-unpacker tricks – part one. Virus Bulletin,

December 2008, p.4. http://www.virusbtn.com/
pdf/magazine/2008/200812.pdf.

[2] Ferrie, P. Anti-unpacker tricks – part two. Virus
Bulletin, January 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200901.pdf.

[3] Ferrie, P. Anti-unpacker tricks – part three. Virus
Bulletin, February 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200902.pdf.

[4] Ferrie, P. Anti-unpacker tricks – part four. Virus
Bulletin, March 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200903.pdf.

[5] Ferrie, P. Anti-unpacker tricks – part fi ve. Virus
Bulletin, April 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200904.pdf.

[6] Ferrie, P. Anti-unpacker tricks. http://pferrie.tripod.com/
papers/unpackers.pdf.

http://pferrie.tripod.com/papers/unpackers.pdf
http://www.virusbtn.com/pdf/magazine/2008/200812.pdf
http://www.virusbtn.com/pdf/magazine/2009/200901.pdf
http://www.virusbtn.com/pdf/magazine/2009/200902.pdf
http://www.virusbtn.com/pdf/magazine/2009/200903.pdf
http://www.virusbtn.com/pdf/magazine/2009/200904.pdf

